Emission Source/Operating Scenario Data Page 1 of 3

Boiler #7 - Operating Scenario #1 - Coal

If Emission Source has multiple Operating Scenarios, complete one form for each. (All permitted, Issignificant and/or Non-permitted Sources)	

Facility ID #:	6800043	
Permit #:	3069T17	
County:	Orange	
DAQ Region:	RRO	

_				
D.	A I	ite,	N	ame:
		JLV	1.4	auic.

University of North Carolina at Chapel Hill

North Carolina Department of Environment and Natural Resources **Division of Air Quality**

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)					E	S-002-Boiler #7
2. Emission Source Description	Coal /	Coal / Natural Gas / No. 2 Fuel Oil Fired Circulating Fluidized Bed Combustion - So Generating Unit				Combustion - Steam
3. Operating Scenario Description		Operating Scenario #1 - Coal				
4. Maximum Permitted Operating Rate With Units (Ex. gal/hr, mmBtu/hr)		323.17 MMBtu/hr				
5. Throughput in CY (e.g. production or fuel use) With Units (Ex. lbs/yr, gal/yr)			56	,878	•	tons/yr
6. Fuel Information (if fuel used)	% Sulfur	1.12%	% Ash	8.05%	Heat Content (Bra/lb or mmCF)	13,068 Btu/lb

If you do not provide annual throughput/fuel use, your inventory will be deemed incomplete and returned to you.

7. Capture Efficiency (% Emissions from Emission Source Vented to Control Device or Stack)	100%

8. Control Device Information, if none, write "none"

Control Device ID # (as listed in permit)		Control Device Description
i. (nearest stack)	CD-004	Bagfilter with Calcium Carbonate (CaCO ₃) Sorbent Injection
ii.	N/A	N/A
iii.	N/A	N/A
iv.	N/A	N/A

9. Stack Information (sources vented to more than one stack use additional entry lines)

	Height	Diameter (feet)	Temperature	Velocity	Volume Flow Rate	Release Point Description
Stack ID#	(in whole feet)	Circle (enter #), Rectangle (L#, W#) (in 0.1 feet)	(F)	(feet/sec)	(acfm)	(Fugitive, Vertical, Vertical w/ cap, Horizontal, Downward - see instructions)
EP-14-136	220	9	305	56.1	214,000	Vertical
				ga.e.*		-
		···	••			-

10. Operating Schedule (Source/Operating Scenario that best characterizes calendar year)

Hours/Day	24	Days/Week	7	Weeks/Year	50	Hours/Year	8,154 Total
Typical Start	& End Times in CY:			Start:	N/A	End:	N/A

11. Seasonal Periods Percent Annual Throughput (for Emission Source in CY, MUST total 100%)

Jan-Feb, 2002 + Dec, 2002 33.86% Mar-May 18.93%	June-Aug	22.13%	Sept-Nov	25.08%
--	----------	--------	----------	--------

Emission Source/Operating Scenario Data Page 2 of 3

Boller #7 - Operating Scenario #1 - Coal

Emission Source has multiple Operating Scenarios, complete one form for each

(All compiled Insignificant ender Non-committed Scurper)

		r Non-permitted Sources)
Facility Name:		University of North Carolina at Chapel Hill

Facility ID #: 6800043

Permit #: 3069T17

County: Orange

DAQ Region: RRO

North Carolina Department of Environment and Natural Resources Division of Air Quality

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

Emissions: Attach calculations and documentation of emission factors or other estimation methods used.

Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)

ES-002-Boiler #7

Criteria (NAAQS) Pollutants	Pollutant Code	Emissions Criteria (Tons/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Carbon Monoxide	СО	511.90	8	N/A
NOx	NOx	271.30	1	N/A
PM Total	PM	1.41	8	99.80%
PM-2.5	PM-2.5	0.84	8	97.90%
PM-10	PM-10	1.41	8	99.60%
SO2	SO2	101.33	1	90.00%
VOC	VOC	1.42	8	N/A
HAP/TAP Pollutants (In Alphabetical Order)	CAS # (or other code - see instructions)	Emissions HAP/TAP (Pounds/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Acetaldehyde	750-07-0	32.42	8	N/A
Acetophenone	98-86-2	0.85	8	N/A
Acrolein	107-02-8	16.49	8	N/A
Arsenic	ARSENICCPDS	0.60	8	99.60%
Benzene	71-43-2	73.94	8	N/A
Benzo(a)pyrene	50-32-8	2.16E-03	8	N/A
Benzyl chloride	100-44-7	39.81	8	N/A
Beryllium	BERYLCPDS	27.95	8	N/A
Biphenyi	92-52-4	9.67E-02	8	N/A
Bis(2-ethylhexyl)phthalate (DEHP)	117-81-7	4.15	8	N/A
Bromine	7726-95-6	12.19	8	99.60%
Bromoform	75-25-2	2.22	8	N/A
Cadmium	CADMIUMCPDS	2.45E-02	8	99.60%
Carbon disulfide	75-10-0	7.39	8	N/A
2-Chloroacetophenone	532-27-4	0.40	8	N/A
Chlorobenzene	108-90-7	1.25	8	N/A
Chloroform	67-66-3	3.36	8	N/A
Chromium	CROMCPDS	0.96	8	99.60%
Chromium (VI)	CHROM6CPDS	0.96	8	99.60%
Cumene	98-82-8	0.30	8	N/A
Cyanide	CNC	142.19	8	N/A
Dibenzofurans	132-64-9	1.14E-02	8	N/A
Dimethyl sulfate	77-78-1	2.73	8	N/A
2,4-Dinitrotoluene	121-14-2	1.59E-02	8	N/A
Ethyl benzene	100-41-4	5.35	8	N/A
Ethyl chloride	75-00-3	2.39	8	N/A
Ethylene dibromide	106-93-4	6.83E-02	8	N/A
Ethylene dichloride	107-06-2	2.28	8	N/A

Emission Source/Operating Scenario Data Page 3 of 3

Boiler #7 - Operating Scenario #1 - Coal

	(All permitted, Insignificant and/or Non-permitted Sources)
Facility Name:	Universi	t

University of North Carolina at Chapel Hill

Facility ID #:	6800043
Permit #:	3069T17
County:	Orange
DAO Region:	RRO

DAQ Region:

North Carolina Department of Environment and Natural Resources **Division of Air Quality**

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

Emissions: Attach calculations and documentation of emission factors or other estimation methods used.

Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)

ES-002-Boiler #7

Criteria (NAAQS) Pollutants	Pollutant Code	Emissions Criteria (Tons/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Carbon Monoxide	СО	N/A	N/A	N/A
NOx	NOx	N/A	N/A	N/A
PM Total	PM	N/A	N/A	N/A
PM-2.5	PM-2.5	N/A	N/A	N/A
PM-10	PM-10	N/A	N/A	N/A
SO2	SO2	N/A	N/A	N/A
VOC	VOC	N/A	, N/A	N/A
HAP/TAP Pollutants (In Alphabetical Order)	CAS # (or other code - see instructions)	Emissions HAP/TAP (Pounds/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Formaldehyde	50-0-00	13.65	8	N/A
Hexane	HEXANEISO	3.81	8	N/A
Hydrogen Chloride ***	7647-01-0	120011.84	8	90% Control with CaCO ₃
Hydrogen Fluoride ***	7664-39-3	2502.62	8	90% Control with CaCO ₃
Isophorone	78-59-1	32.99	8	N/A
Lead	LEADCPDS	0.39	8	99.60%
Manganese	MANGCPDS	1.66	8	99.60%
Mercury***	MERCCPDS	2.12	8	N/A
Methyl bromide	74-83-9	9.10	8	N/A
Methyl chloride	74-87-3	30.15	8	N/A
Methyl ethyl ketone	78-93-3	22.18	8	N/A
Methyl hydrazine	60-34-4	9.67	88	N/A
Methyl methacrylate	80-62-6	1.14	8	N/A
Methyl tert butyl ether	1634-04-4	1.99	8	N/A
Methylene chloride	75-09-2	16.49	88	N/A
Naphthalene	91-20-3	0.74	8	N/A
Nickel	NICKCPDS	0.79	8	99.60%
Phenol	108-95-2	0.91	8	N/A
POM	POM	3.33	8	N/A
Propionaldehyde	123-38-6	21.61	8	N/A
Styrene	100-42-5	1.42	8	N/A
2,3,7,8-TCDD	1746-01-6	8.13E-07	8	N/A
Tetrachloroethylene	79-34-5	2.45	8	N/A
Toluene	108-88-3	13.65	8	N/A
1,1,1-Trichloroethane	79-00-5	1.14	8	N/A
Vinyl acetate	108-05-4	0.43	8	N/A
Xylenes	1330-20-7	2.10	8	N/A

Emission Source/Operating Scenario Data Page 1 of 2

Boiler #7 - Operating Scenario #2 - Natural Gas

If Emission Source has multipl	c Operating	Scenarios,	complete on	e form for a	ich.	
(All permitted, Insi	pnificant and	Vor Non-p	ermitted Sou	rces)		

ecility Name:	University of

University of North Carolina at Chapel Hill

Facility ID #:	6800043
Permit #:	3069T17
County:	Orange

DAQ Region:

RRO

North	Carolina	Department of	Environment and	i Natural	Resources
		Division	of Air Quality		

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

1. Emission Source ID No. (same as in permit - Use	ES-	-002-Boiler #7					
Coal / Natural Gas / No. 2 Fuel Oil Fired Circulating For Generating Unit						ombustion – Steam	
3. Operating Scenario Description		Operating Scenario #2 - Natural Gas					
4. Maximum Permitted Operating Rate With Units (Ex. gal/hr, mmBtu/hr)		323.17 MMBtu/hr					
5. Throughput in CY (e.g. production or fuel use) With Units (Ex. lbs/yr, gal/yr)			3,4	125		1,000 ft³/yr	
6. Fuel Information (if fuel used)	% Sulfur	N/A	% Ash	N/A	Heat Content (Btu/lb or mmCF)	1,030 Btu/ft	

If you do not provide annual throughput/fuel use, your inventory will be deemed incomplete and returned to you.

Control Victoria and Control Victoria Control Design of Control	100%
17. Canture Efficiency (% Emissions from Emission Source Vented to Control Device or Stack)	1 10070
	1

8. Control Device Information, if none, write "none"

	Control Device ID # (as listed in permit)	Control Device Description
i. (nearest stack)	CD-004	Bagfilter with Calcium Carbonate (CaCO3) Sorbent Injection
ii.	N/A	N/A
iii.	N/A	N/A
iv.	N/A	N/A

9. Stack Information (sources vented to more than one stack use additional entry lines)

	Height	Diameter (feet)	Temperature	Velocity	Volume Flow Rate	Release Point Description
Stack ID#	(in whole feet)	Circle (enter #), Rectangle (L#, W#) (in 0.1 feet)	(F)	(feet/sec)	(acfm)	(Fugitive, Vertical, Vertical w/ cap, Horizontal, Downward - see Instructions)
EP-14-136	220	9	305	56.1	214,000	Vertical
						<u></u>
•	- m	40	. ==		••	-

10. Operating Schedule (Source/Operating Scenario that best characterizes calendar year)

Hours/Day		24	Days/Week	7	Weeks/Year	50	Hours/Year	7,848 Total
Typical Start & End Times in CY:				Start:	N/A	End:	N/A	

11. Seasonal Periods Percent Annual Throughput (for Emission Source in CY, MUST total 100%)

Jan-Feb, 2002 + Dec, 2002	1.46%	Mar-May	57.81%	June-Aug	9.93%	Sept-Nov	30.80%
------------------------------	-------	---------	--------	----------	-------	----------	--------

Facility Name:

Bouer #7 - Operating Scenario #2 - Natural Gas	rermit #:	3007117
Smission Source has multiple Operating Scenerics, complete one form for each. (All permitted, Insignificant and/or Non-permitted Sources)	County:	Orange
University of North Carolina at Chapel Hill	DAQ Region:	RRO

North Carolina Department of Environment and Natural Resources **Division of Air Quality**

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

Emissions: Attach calculations and documentation of emission factors or other estimation methods used.

6800043

sion Source ID No. (same		•	•	
Criteria (NAAQS) Pollutants	Pollutant Code	Emissions Criteria (Tons/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Carbon Monoxide	СО	0.14	8	N/A
NOx	NOx	0.64	1 .	N/A
PM Total	PM	0.01	8	N/A
PM-2.5	PM-2.5	0.01	8	N/A
PM-10	PM-10	0.01	8	N/A
SO2	SO2	0.00	1	N/A
VOC	VOC	0.01	8	N/A
HAP/TAP Pollutants (In Alphabetical Order)	CAS # (or other code - see instructions)	Emissions HAP/TAP (Pounds/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Arsenic	ARSENICCPDS	6.85E-04	8	N/A
Benzene	71-43-2	0.01	8	N/A
Cadmium	CADMIUMCPDS	3.77E-03	8	N/A
Chromium	CROMCPDS	4.80E-03	8	N/A
Chromium VI	CHROM6CPDS	4.80E-03	8	N/A
Dichlorobenzene	106-46-7	4.11E-03	8	N/A
Formaldehyde	50-00-0	0.26	8	N/A
Hexane	HEXANEISO	6.17E+00	8	N/A
Lead	LEADCPDS	1.71E-03	8	N/A
Manganese	MANGCPDS	1.30E-03	8	N/A
Mercury	MERCPDS	8.91E-04	8	N/A
Napthalene	91-20-3	2.09E-03	8	N/A
Nickel	NICKCPDS	0.01	8	N/A
РОМ	POM	2.27E-03	8	N/A
Toluene	108-88-3	0.01	8	N/A
·				
				<u> </u>

Boile	r #7 - Operating Scenario #3 - No. 6 Fuel Oil	Permit #:	3069117
	ion Source has multiple Operating Scenarios, complete one form for each. (All permitted, Insignificant and/or Non-permitted Sources)	County:	Orange
acility Name:	University of North Carolina at Chapel Hill	DAQ Region:	RRO
•		-	

North Carolina Department of Environment and Natural Resources Division of Air Quality

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

. Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)					ES-002	-Boiler #7
2. Emission Source Description	Coal/	Natural Gas	/ No. 6 Fuel	Oil Fired Circulating I Generating Unit	Pluidized Bed Com	oustion - Steam
3. Operating Scenario Description	Operating Scenario #3 - No. 6 Fuel Oil					
4. Maximum Permitted Operating Rate With Units (Ex. gal/hr, mmBtu/hr)				323.17 MMBtu/hr		
5. Throughput in CY (e.g. production or fuel use) With Units (Ex. lbs/yr, gal/yr)				0	gal	lons/yr
6. Fuel Information (if fuel used)	% Sulfur	2.10%	% Ash	0.10% Heat Content	(Btu/lb or mmCF)	150,000 Btu/ga

If you do not provide annual throughput/fuel use, your inventory will be deemed incomplete and returned to you.

	1008/
in the second control of the second control	100%
7. Capture Efficiency (% Emissions from Emission Source Vented to Control Device or Stack)	100/0
17. Capture Elliciency (70 Emissions from Emission Bource vented to Control Borriso of Emission	

8. Control Device Information, if none, write "none"

Control Device ID # (as listed in permit)		Control Device Description
. (nearest stack)	CD-004	Bagfilter with Calcium Carbonate (CaCO ₃) Sorbent Injection
i.	N/A	N/A
ii.	N/A	N/A
ν.	N/A	N/A

9. Stack Information (sources vented to more than one stack use additional entry lines)

	Height	Diameter (feet)	Temperature	Velocity	Volume Flow Rate	Release Point Description
Stack ID#	(in whole feet)	Circle (enter #), Rectangle (L#, W#) (in 0.1 feet)	(F)	(feet/sec)	(acfm)	(Fugitive, Vertical, Vertical w/ cap, Horizontal, Downward - see instructions)
EP-14-136	220	9	305	56.1	214,000	Vertical
					· 	
			. 			<u>-</u>

10. Operating Schedule (Source/Operating Scenario that best characterizes calendar year)

10. Operati	me period and (pomen of					- 	
Hours/Day	0	Days/Week	0	Weeks/Year	0	Hours/Year	0
	& End Times in CY:			Start:	N/A	End:	N/A

11. Seasonal Periods Percent Annual Throughput (for Emission Source in CY, MUST total 100%)

Jan-Feb, 2002 + Dec, 2002 0.00% Mar-May	#DIV/0!	June-Aug	#DIV/0!	Sept-Nov	#D1V/0!
--	---------	----------	---------	----------	---------

Facility Name:

Bouer #7 - Operating Scenario #3 - 140. O E wet On	r ci mit #.
If Emission Source has multiple Operating Scenerios, complete one form for each.	County:
(All permitted, Insignificant and/or Non-permitted Sources)	County.
Illustration of North Carolina at Chanel Hill	DAO Pagione

North Carolina Department of Environment and Natural Resources Division of Air Quality

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

Emissions: Attach calculations and documentation of emission factors or other estimation methods used.

Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)

ES-002-Boiler #7

6800043

3069T17

Orange R.RO

Facility ID #:

Danmis #.

Criteria (NAAQS) Pollutants	Pollutant Code	Emissions Criteria (Tons/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Carbon Monoxide	СО	0.00	8	N/A
NOx	NOx		1	N/A
PM Total	PM	0.00	. 8	99.0%
PM-2.5	PM-2.5	0.00	8	99.0%
PM-10	PM-10	0.00	8	99.0%
SO2	SO2	0.00	1	90.00%
VOC	VOC	0.00	8	N/A
HAP/TAP Pollutants (In Alphabetical Order)	CAS # (or other code - see instructions)	Emissions HAP/TAP (Pounds/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Antimony	ANTIMONYCPDS	0.00E+00	8	99.0%
Arsenic	ARSENICCPDS	0.00E+00	. 8	99.0%
Benzene	71-43-2	0.00E+00	8	N/A
Beryllium	BERYLCPDS	0.00E+00	8	99.0%
Cadmium	CADMIUMCPDS	0.00E+00	8	99.0%
Chromium	CROMCPDS	0.00E+00	8	99.0%
Chromium VI	CHROM6CPDS	0.00E+00	8	99.0%
Cobalt	COBALTCPDS	0.00E+00	8	99.0%
Ethylbenzene	100-41-4	0.00E+00	. 8	N/A
Fluoride	16984-48-8	0.00	8	N/A
Formaldehyde	50-00-0	0.00	8	N/A
Lead	LEADCPDS	0.00E+00	8	99.0%
Manganese	MANGCPDS	0.00E+00	8	99.0%
Mercury	MERCPDS	0.00E+00	8	99.0%
Methyl chloroform	71-55-6	0.00E+00	8	N/A
Napthalene	91-20-3	0.000	8	N/A
Nickel	NICKCPDS	0.00E+00	8	99.0%
POM	POM	0.00E+00	8	99.0%
Selenium	SEC	0.00E+00	. 8	99.0%
Toluene	108-88-3	0.00	8	N/A
Xylene	1330-20-7	0.00E+00	8	N/A

Page 1 of 2 Emission Source/Operating Scenario Data

Boiler #7	' - Operating Scenario #4 - No. 2 Fuel Oil	Permit #:	3009117
	urce has multiple Operating Sconarios, complete one form for each. permitted, Insignificant and/or Non-permitted Sources)	County:	Orange
lity Name:	University of North Carolina at Chapel Hill	DAQ Region:	RRO
•			

6800043

North Carolina Department of Environment and Natural Resources **Division of Air Quality**

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

1. Emission Source ID No. (same as in permit - Use "U"	prefix for non-	permitted and "I	" for insignificant)	ES-	002-Boiler #7
2. Emission Source Description				Fired Circulating Fluidized Bed Co Generating Unit	ombustion - Steam
3. Operating Scenario Description			Operating	Scenario #4 - No. 2 Fuel Oil	
4. Maximum Permitted Operating Rate With Units (Ex. gal/hr, mmBtu/hr)				323.17 MMBtu/hr	
5. Throughput in CY (e.g. production or fuel use) With Units (Ex. lbs/yr, gal/yr)	-		0		gallons/yr
6. Fuel Information (if fuel used)	% Sulfur	0.50%	% Ash	Heat Content (Btu/lb or numCF)	137,006 Btu/ga

If you do not provide annual throughput/fuel use, your inventory will be deemed incomplete and returned to you.

		1000/
- 1	7. Capture Efficiency (% Emissions from Emission Source Vented to Control Device or Stack)	100%
	/. Capture Elliciency (% Emissions from Emission Source veneta to Control Device of Stacky	

8. Control Device Information, if none, write "none"

	Control Device ID # (as listed in permit)	Control Device Description
i. (nearest stack)	CD-004	Bagfilter with Calcium Carbonate (CaCO ₃) Sorbent Injection
ii.	N/A	N/A
iii.	N/A	N/A
iv.	N/A	N/A

9. Stack Information (sources vented to more than one stack use additional entry lines)

	Height	Diameter (feet)	Temperature	Velocity	Volume Flow Rate	Release Point Description
Stack ID#	(in whole feet)	Circle (enter #), Rectangle (L#, W#) (in 0.1 feet)	(F)	(feet/sec)	(acfm)	(Fugitive, Vertical, Vertical w/ cap, Horizontal, Downward - see instructions)
EP-14-136	220	9	305	56.1	214,000	Vertical

10. Operating Schedule (Source/Operating Scenario that best characterizes calendar year)

Hours/Day	24	Days/Week	7	Weeks/Year	50	Hours/Year	7,848 Total
Typical Start & Er	nd Times in CY:	····		Start:	N/A	End:	N/A

11. Seasonal Periods Percent Annual Throughput (for Emission Source in CY, MUST total 100%)

Jan-Feb, 2002	#DIV/0!	Mar-May	#DIV/0!	June-Aug	#DIV/0!	Sept-Nov	#DIV/0!
+ Dec, 2002							<u></u> _

Emission Source/Operating Scenario Data Page 2 of 2

Boiler #7 - Operating Scenario #4 - No. 2 Fuel Oil

	Boller #7 - Operating Scenario #4 - No. 2 Fuel Oil	Permit #:
	If Emission Source has multiple Operating Scenarios, complete one form for each. (All permitted, Insignificant and/or Non-permitted Sources)	County:
Facility Name:	University of North Carolina at Chapel Hill	DAQ Region:

	•		

North Carolina Department of Environment and Natural Resources **Division of Air Quality**

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

Emissions: Attach calculations and documentation of emission factors or other estimation methods used.

Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)

ES-002-Boiler #7

6800043

3069T17

Orange

RRO

Facility ID #:

Criteria (NAAQS) Pollutants	Pollutant Code	Emissions Criteria (Tons/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Carbon Monoxide	СО	0.00	8	N/A
NOx	NOx	0.00	. 1	N/A
PM Total	PM	0.00	8	99.0%
PM-2.5	PM-2.5	0.00	8	99.0%
PM-10	PM-10	0.00	8	99.0%
SO2	SO2	0.00	1	90.00%
VOC	VOC	0.00	8	N/A
HAP/TAP Pollutants (In Alphabetical Order)	CAS # (or other code - see instructions)	Emissions HAP/TAP (Pounds/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Antimony	ANTIMONYCPDS	0.00E+00	8	99.0%
Arsenic	ARSENICCPDS	0.00E+00	8	99.0%
Benzene .	71-43-2	0.00E+00	8	N/A
Beryllium	BERYLCPDS	0.00E+00	8	99.0%
Cadmium	CADMIUMCPDS	0.00E+00	8	99.0%
Chromium	CROMCPDS	0.00E+00	8	99.0%
Chromium VI	CHROM6CPDS	0.00E+00	8	99.0%
Cobalt	COBALTCPDS	0.00E+00	8	99.0%
Ethylbenzene	100-41-4	0.00E+00	8	N/A
Fluoride	16984-48-8	0.00	8	N/A
Formaldehyde	50-00-0	0.00	8	N/A
Lead	LEADCPDS	0.00E+00	. 8	99.0%
Manganese	MANGCPDS	0.00E+00	8	99.0%
Mercury	MERCPDS	0.00E+00	8	99.0%
Methyl chloroform	71-55-6	0.00E+00	8	N/A
Napthalene	91-20-3	0.000	8	N/A
Nickel	NICKCPDS	0.00E+00	8	99.0%
POM	POM	0.00E+00	8	99.0%
Selenium	SEC	0.00E+00	8	99.0%
Toluene	108-88-3	0.00	8	N/A
Xylene	1330-20-7	0.00E+00	8	N/A

Chapel Hill, North Carolina
Orange County
Facility ID # 6800043
Permit # 03069T17

2004 Annual Emissions Inventory

Boiler #7
(ES-002-Boiler #7)
Emissions Calculations

SO₂ and NOx Emissions are Taken from CEMs data HCl, HF, Hg emissions are based on stack test data All other estimates are from DAQ Spreadsheets

Bituminous Coal Combustion 2004 Annual Emissions Inventory University of North Carolina at Chapel Hill Chapel Hill Orange Care

Facility.

City County

Orange County

APP #/Fac ID

6800043

Input By

RST Engineering Boiler #7

Source ID

(ES-002-Boiler #7)

Operating Scenario #1

Maximum Heat Input	323.17	mmBtu/hr	Boiler Type:	7
		_	1) Pulverized/Dry Bottom	6) Underfeed Stoker
Boiler Size/Type	Large Industrial	4	2) Pulverized/Wet Bottom	7) Fluidized Bed Cir.
••	-		3) Cyclone Furnace	8) Fluidized Bed Bub.
Actual Fuel Usage	56,878	ton/yr	4) Spreader Stoker	9) Hand Fed
or	or	-	5) Overfeed Stoker	
Hours of Operation		hr/yr	•	
and	and	-	Control Device Efficiencies	:
Heating Value	13,068	Btu/lb	PM	99.80 %
		_	PM-10	99.60 %
		ton/yr	PM-2.5	97.90 %
		_	SOx*	90.00 %
Sulfur Content	1.12] %	NOx*	0.00 %
Ash Content :	8.1] %		
B)ituminous or (S)ubbituminous?	В] (B/S)		timates were calculated using
Calcium to Sulfur Ratio	2.22	7		x and NOX emissions data prong CEMs spreadsheets.
Calcium to Sullui Ratio	4.44	J .		sions based on stack test data

Bituminous Coal Combustion

2004 Annual Emissions Inventory

Facility City County University of North Carolina at Chapel Hill

Chapel Hill Orange County APP #/Fac ID Input By Source ID 6800043 RST Engineering Boiler #7

(ES-002-Boiler #7)

Operating Scenario #1

ACTUAL CRITERIA EMISSIONS				
	Factor	,	Emission Rates	
Pollutant	(ib poll./ton coal)	(lb/hr)	(lb/yr)	(tpy)
PM	17	0.61	2,821	1.41
PM-10	12.4	0.61	2,821	1.41
PM-2.5*	1.4	0.36	1,672	0.84
SO2	9.75	**	**	**
SO3*	0.07	**	**	**
NOx	3.90	**	**	**
VOC	0.05	0.62	2,844	1.42
CO	18	222.57	1,023,798	511.90

(lb poil./ton coal) 5.70E-04 1.50E-05 2.90E-04 5.29E-03 1.30E-03	(lb/hr) 7.05E-03 1.85E-04 3.59E-03 1.31E-04	(lb/yr) 3.24E+01 8.53E-01 1.65E+01	(tpy) 1.62E-02 4.27E-04
1.50E-05 2.90E-04 5.29E-03 1.30E-03	1.85E-04 3.59E-03	8.53E-01	1.62E-02 4.27E-04
2.90E-04 5.29E-03 1.30E-03	3.59E-03		4.27E-04
5.29E-03 1.30E-03		1 65F+01	
1.30E-03	1 31F-04		8.25E-03
	1.0.2.	6.02E-01	3.01E-04
	1.61E-02	7.39E+01	3.70E-02
3.80E-08	4.70E-07	2.16E-03	1.08E-06
7.00E-04	8.66E-03	3.98E+01	1.99E-02
4.91E-04	6.08E-03	2.80E+01	1.40E-02
1.70E-06	2.10E-05	9.67E-02	4.83E-05
7.30E-05	9.03E-04	4.15E+00	2.08E-03
1.07E-01	2.65E-03	1.22E+01	6.09E-03
	4.82E-04	2.22E+00	1.11E-03
2.15E-04	5.33E-06	2.45E-02	1.23E-05
1.30E-04	1.61E-03	7.39E+00	3.70E-03
7.00E-06	8.66E-05	3.98E-01	1.99E-04
2.20E-05	2.72E-04	1.25E+00	6.26E-04
5.90E-05	7.30E-04	3.36E+00	1.68E-03
8.46E-03	2.09E-04	9.62E-01	4.81E-04
8.46E-03	2.09E-04	9.62E-01	4.81E-04
5.30E-06	6.55E-05	3.01E-01	1.51E-04
2.50E-03	3.09E-02	1.42E+02	7.11E-02
2.01E-07	2.49E-06	1.14E-02	5.72E-06
4.80E-05	5.94E-04	2.73E+00	1.37E-03
2.80E-07	3.46E-06	1.59E-02	7. 96E- 06
9.40E-05	1.16E-03		2.67E-03
4.20E-05	5.19E-04		1.19 E- 03
1.20E-06	1.48E-05		3.41E-05
4.00E-05	4.95E-04		1.14E-03
2.40E-04	2.97E-03	****	6.83E-03
6.70E-05	8.28E-04		1.91E-03
2.11E+00	2.61E+01		6.00E+01
4.40E-02	5.44E-01		1.25E+00
5.80E-04	7.17E-03		1.65E-02 1.94E-04
	7.00E-04 4.91E-04 1.70E-06 7.30E-05 1.07E-01 3.90E-05 2.15E-04 1.30E-04 7.00E-06 2.20E-05 5.90E-05 8.46E-03 8.46E-03 5.30E-06 2.50E-03 2.01E-07 4.80E-05 2.80E-07 9.40E-05 4.20E-05 1.20E-06 4.00E-05 2.40E-04 6.70E-05 2.11E+00 4.40E-02	7.00E-04 8.66E-03 4.91E-04 6.08E-03 1.70E-06 2.10E-05 7.30E-05 9.03E-04 1.07E-01 2.65E-03 3.90E-05 4.82E-04 2.15E-04 5.33E-06 1.30E-04 1.61E-03 7.00E-06 8.66E-05 2.20E-05 2.72E-04 5.90E-05 7.30E-04 8.46E-03 2.09E-04 8.46E-03 2.09E-04 5.30E-06 6.55E-05 2.50E-03 3.09E-02 2.01E-07 2.49E-06 4.80E-05 5.94E-04 2.80E-07 3.46E-06 9.40E-05 1.16E-03 4.20E-05 5.19E-04 1.20E-06 1.48E-05 4.00E-05 4.95E-04 2.40E-04 2.97E-03 6.70E-05 8.28E-04 2.11E+00 2.61E+01 4.40E-02 5.44E-01 5.80E-04	7.00E-04 8.66E-03 3.98E+01 4.91E-04 6.08E-03 2.80E+01 1.70E-06 2.10E-05 9.67E-02 7.30E-05 9.03E-04 4.15E+00 1.07E-01 2.65E-03 1.22E+01 3.90E-05 4.82E-04 2.22E+00 2.15E-04 5.33E-06 2.45E-02 1.30E-04 1.61E-03 7.39E+00 7.00E-06 8.66E-05 3.98E-01 2.20E-05 2.72E-04 1.25E+00 5.90E-05 7.30E-04 9.62E-01 8.46E-03 2.09E-04 9.62E-01 8.46E-03 2.09E-04 9.62E-01 5.30E-06 6.55E-05 3.01E-01 2.50E-03 3.09E-02 1.42E+02 2.01E-07 2.49E-06 1.14E-02 4.80E-05 5.94E-04 2.73E+00 2.80E-07 3.46E-06 1.59E-02 9.40E-05 5.19E-04 2.39E+00 1.20E-06 1.48E-05 6.83E-02 4.00E-05 4.95E-04 2.28E+00 2.40E-04 2.97E-03 1.37E+01 6.70E-05 8.28E-04 2.28E+00 2.11E+00 2.61E+01 1.20E+05 4.40E-02 5.44E-01 2.50E+03 5.80E-04 7.17E-03 3.30E+01

^{**}SO₂ and NOx emissions were estimated using CEMS data, please refer to the attached data sheets entitled "Sulfur Dioxide Emissions from Boiler #7" and Nitrogen Dioxide Emissions from Boiler #7".

^{***} HCI, HF, and Hg emissions based on stack test data.

Bituminous Coal Combustion

2004 Annual Emissions Inventory

Facility City University of North Carolina at Chapel Hill

City Chapel Hill
County Orange County

APP #/Fac ID Input By

6800043 RST Engineering

(ES-002-Boiler #7)

1.22E-03

6.83E-03

5.69E-04

2.16E-04

1.05E-03

61.54

Source ID Boiler #7

Operating Scenario #1

4.30E-05

2.40E-04

2.00E-05

7.60E-06

3.70E-05

Actual Toxic Emissions (cont...)

Factor **Emission Rates Pollutant** (lb poll./ton coal) (lb/hr) (lb/yr) (tpy) Manganese 1.46E-02 3.61E-04 1.66E+00 8.31E-04 Mercury*** 3.73E-05 4.61E-04 2.12E+00 1.06E-03 Methyl bromide 1.60E-04 1.98E-03 9.10E+00 4.55E-03 Methyl chloride 5.30E-04 3.01E+01 6.55E-03 1.51E-02 Methyl ethyl ketone 3.90E-04 4.82E-03 2.22E+01 1.11E-02 Methyl hydrazine 1.70E-04 9.67E+00 2.10E-03 4.83E-03 Methyl methacrylate 1.14E+00 2.00E-05 2.47E-04 5.69E-04 Methyl tert butyl ether 3.50E-05 4.33E-04 1.99E+00 9.95E-04 Methylene chloride 2.90E-04 3.59E-03 1.65E+01 8.25E-03 Naphthalene 7.39E-01 1.30E-05 1.61E-04 3.70E-04 Nickel 6.95E-03 1.72E-04 7.91E-01 3.95E-04 Phenol 1.60E-05 1.98E-04 9.10E-01 4.55E-04 POM 5.85E-05 7.24E-04 3.33E+00 1.66E-03 Propionaldehyde 2.16E+01 3.80E-04 4.70E-03 1.08E-02 Styrene 2.50E-05 3.09E-04 1.42E+00 7.11E-04 2,3,7,8-TCDD 8.13E-07 1.43E-11 1.77E-10 4.07E-10

5.32E-04

2.97E-03

2.47E-04

9.40E-05

4.58E-04

26.76

2.45E+00

1.37E+01

1.14E+00

4.32E-01

2.10E+00

123,075.63

Version 5b-1.0k by Tony Pendola; 06/17/97

Tetrachloroethylene

Toluene

1,1,1-Trichloroethane

Vinyl acetate

Xylenes

Total HAPs

Notes

- 1) Emission factors are from Supplement B to the 5th edition of AP-42, unless otherwise noted
- 2) Emission calculations will be based on the hours of operation only when actual fuel usage is not supplied
- 3) Particulate controls affect PM, PM-10, PM-2.5, and all toxics that are regulated as particulates except Mercury
- 4) VOC = NMTOC = TOC * (1-%METHANE)
- 5) PM-2.5 and SO3 do not currently need to be reported
- 6) Dibenzofurans = Polychlorinated dibenzo-p-furans
- 7) The Br emission factor is based on a mass balance generated from a 3 year coal analysis for Duke Power (1990-1992, 7 samples per year). The average concentration of bromine was 55.33 ppm (wet basis) and a heating value of 13,500 Btu/lb was assumed.
- 8) For fluidized bed combustion the emission factor for underfeed stokers is utilized whenever the calcium-to-sulfur ratio is outside of the acceptable range of 1.5 to 7

Natural Gas Combustion Emissions Calculator NG2000 Revision C 2004 Annual Emissions Inventory Boiler #7 (ES-002-Boiler #7)

Operating Scenario #2

Facility ID # 6800043 Permit # 03069T17

User Input		Emissions Outhult (for operation 19 22 heter)	(for operation 4	10 22 hahan		
	University of North	Thomas carries	uo operanon	3.22 III/VE		Emission
Company Name:	Carolina at Chapel Hill	Criteria Pollutants				Factor
Plant City:	Orange County	Pollutant	lb/hr	lb/yr	φ	(lb/mmscf)
Permit Number	Chapel Hill	PM	2.4E+00	2.6E+01	1.3E-02	7.6E+00
	03069117	PM-10	2.4E+00	2.6E+01	1.3E-02	7.6E+00
Heat Input Canacity (mmBhi/hr):	TRC Environmental Corp.	PM-2.5	2:4E+00	2.6E+01	1.3E-02	7.6E+00
First land Consists (406 per 2)	323.1/	×ON	‡	\$	#	1.9E+02
Applied First Therefore (10 Sci/Nr):	0.32	00x	1.7E+00	1.9E+01	9.4E-03	5.5E+00
Aminal ruel Infougnput (10° scr): Latest Construction/Modification Date:	3.43	03	2.7E+01	2.9E+02	1.4E-01	8.4E+01
and contraction of the contracti	Α/N	202	:	:	*	6.0E-01
Enter the boiler type below N		Total HAP	6.0E-01	6.5E+00	3.2E-03	1.9E+00
2		Largest HAP	5.7E-01	6.2E+00	3.1E-03	1.8E+00
A Control of the Cont		Toxic/Hazardous Air Pollutants	ir Pollutants		-	
		Pollutant	lb/hr	lb/day	<u>b</u> ýr	
		Arsenic	6.3E-05	AN	6.9E-04	2.0E-04
4		Benzene	6.7E-04	¥ Z	7.2E-03	2.1E-03
arno Wall Fired Beilem (->400 Pt. /f.		Cadmium	3.5E-04	Υ Z	3.8E-03	1.1E-03
1 = I Incontrolled (Pre-NSDS)	_	Chromium	4.4E-04	AN A	4.8E-03	1.4E-03
2 = Uncontrolled (Post-NSPS)		Chromium VI	4.4E-04	Ϋ́ Z	4.8E-03	1.4E-03
3 = Controlled - Low NOx himers		Dichlorobenzene	3.8E-04	₹ Z	4.1E-03	1.2E-03
4 = Controlled - Flue gas recirculation (FGR)		Formaldehyde	2.4E-02	¥ ¥	2.6E-01	7.5E-02
		nexane	5.7E-01	1.4E+01	6.2E+00	1.8E+00
Small Boilers (<100 mmBtu/hr)		rego	1.6E-04	¥ X	1.7E-03	5.0E-04
5 = Uncontrolled		Manganese	1.2E-04	2.9E-03	1.3E-03	3.8E-04
6 = Controlled - Low NOx burners		Mercury	8.2E-05	2.0E-03	8.9E-04	2.6E-04
7 = Controlled - Low NOx burners/FGR		Ivapnmaiene	1.9E-04	A A	2.1E-03	6.1E-04
		Nickel	6.7E-04	1.6E-02	7.2E-03	2.1E-03
Tangential-Fired Boilers (All Sizes)		POM.	2.1E-04	¥ X	2.3E-03	6.6E-04
8 = Uncontrolled		Loluene	1.1E-03	2.6E-02	1.2E-02	3.4E-03
9 = Controlled - FGR		some xON and NOv emiss	one wore pediment			
Doc don't F.		attached spreadsheets.		on usuing CEMIS	Jata, prease ren	er 10 the
10 = Uncontrolled		Hourly emission rates for all pollutants based on hourly rated capacity.	or all pollutants ba	sed on hourly ra	ted capacity.	
		rescoo revision c dated march 9, 2000	led march 9, 2000			

Fuel Oil Combustion Emissions Calculator FO2000 Revision A 2004 Annual Emissions Inventory Boiler #7 (ES-002-Boiler #7) Facility ID # 6800043 Permit # 03069T17

Operating Scenario #3

User Input	
	University of North Carolina at
Company Name:	Chapel Hill
Plant County:	Orange County
Plant City:	Chapel Hill
Permit Number:	03069T17
User:	RST Engineering
Heat Input Capacity (mmBtu/hr):	323.17
Fuel Input Capacity (10 ³ gal/hr):	2.15
Annual Fuel Throughput (1000 gal):	0.00
Maximum fuel sulfur content (%)	2.1
Latest Construction/Modification Date:	N/A

Emissions Output				Emission
Criteria Pollutants				Factor ¹
Pollutant	lb/hr ²	tpy	lb/yr ³	(lb/10 ³ gal)
Total PM (FPM + CPM)	3.7	0.0000	0	2.49E+01
Filterable PM (FPM) rates @ 99% control	0.5	0.0000	0	2.34E+01
Condensable PM (CPM) ⁴	3.2	0.0000	0	1.50E+00
Filterable PM-10 ⁵	0.4	0.0000	0	1.67E+01
Filterable PM-2.5 ⁵	0.3	0.0000	0	1.22E+01
NOx rates @ 39% control	**	**	**	4.70E+01
NMTOC	2	0.0000	0	7.60E-01
CO	11	0.0000	0	5.00E+00
SO2 rates @ 90% control	**	**	**	3.45E+02
Total HAP ⁶	3.92E-01	0.0000	. 0	1.82E-01
Largest HAP ⁶	1.82E-01	0.0000	0	8.45E-02

Toxic/Hazardous Air Pollutants.				Emission Factor ¹
Pollutant	lb/hr ²	Ib/day ⁷	lb/yr³	(lb/10 ³ gal)
Antimony rates @ 99% control	1.13E-04	NA	0.00E+00	5.25E-03
Arsenic rates @ 99% control	2.84E-05	NA	0.00E+00	
Benzene	4.61E-04	NA	0.00 E+0 0	
Beryllium rates @ 99% control	5.99E-07	NA	0.00E+00	
Cadmium rates @ 99% control	8.57E-06	NA	0.00E+00	
Chromium rates @ 99% control	1.82E-05	NA	0.00E+00	
Chromium VI rates @ 99% control	5.34E-06	NA	0.00E+00	
Cobalt rates @ 99% control	1.30E-04	NA	0.00 E+00	
Ethylbenzene	1.37E-04	NA	0.00E+00	6.36E-05
Fluoride	8.04E-02	1.93E+00	0.00E+00	
Formaldehyde	7.11E-02	1.71E+00	0.00E+00	3.30E-02
Lead rates @ 99% control	3.25E-05	NA	0.00E+00	
Manganese rates @ 99% control	6.46E-05	1.55E-03	0.00E+00	3.00E-03
Mercury	2.43E-04	5.84E-03	0.00E+00	1.13E-04
Methyl chloroform (1,1,1-Trichloroethane)	5.08E-04	1.22E-02	0.00E+00	2.36E-04
Naphthalene	2.43E-03	NA	0.00E+00	1.13E-03
Nickel rates @ 99% control	1.82E-03	4.37E-02	0.00E+00	8.45E-02
POM rates @ 99% control	1.31E-06	NA	0.00E+00	
Selenium rates @ 99% control	1.47E-05	NA	0.00E+00	(
Toluene	1.34E-02	3.21E-01	0.00E+00	
Xylene	2.35E-04	5.64E-03	0.00E+00	1.09E-04

Fuel Oil Combustion Emissions Calculator FO2000 Revision A 2004 Annual Emissions inventory Boiler #7 (E8-002-Boiler #7) Facility ID # 6800043 Permit # 03069T17

Operating Scenario #4 - No.2 Fuel Oil

	University of North Carolina at
Company Name:	Chapel Hill
Plant County:	Orange County
Plant City:	Chapel Hill
Permit Number:	03069T17
User:	RST Engineering
Heat Input Capacity (mmBtu/hr):	323.17
Fuel Input Capacity (10 ³ gal/hr):	2.31
Annual Fuel Throughput (1000 gal):	0.00
Maximum fuel sulfur content (%)	0.5
Latest Construction/Modification Date:	N/A
Enter the boiler type below 🏻	
	15

Boilers =>100 mmBtu/hr	Boilers =>100 mmBtu/hr (cont'd)
1 = No. 6 oil fired, normal firing (U)	16 = No. 2 oil fired (C)
2 = No. 6 oil fired, normal firing (I)	17 = No. 2 oil fired, LNB/FGR (U,I)
3 = No. 6 oil fired, normal firing (C)	18 = No. 2 oil fired, LNB/FGR (C)
4 = No. 6 oil fired, normal firing, low NOx burner (U)	
5 = No. 6 oil fired, normal firing, low NOx burner (I)	19 = Vertical fired utility boiler
6 = No. 6 oil fired, normal firing, low NOx burner (C)	
7 = No. 6 oil fired, tangential firing (U)	Small Bollers (<100 mmBtu/hr)
8 = No. 6 oil fired, tangential firing, low NOx burner (U)	20 = No. 6 oil fired'(I)
9 = No. 5 oil fired, normal firing (U)	21 = No. 6 oil fired (C)
10 = No. 5 oil fired, normal firing (I)	22 = No. 5 oil fired (C)
11 = No. 5 oil fired, tangential firing (U)	23 = No. 4 oil fired (C)
12 = No. 4 oil fired, normal firing (U)	24 = No. 2 oil fired (I)
13 = No. 4 oil fired, normal firing (I)	25 = No. 2 oil fired (C)
14 = No. 4 oil fired, tangential firing (U)	
15 = No. 2 oil fired (U,I)	26 = Residential Furnace

Emission Controls

Particulate controls

Enter the control type below 2	Message Area	Or enter a PM control efficiency below to override built in values.
Control Device 0 = None/other	Avg. Cont. Effic.	User Input PM Cont. Effic.
1 = ESP		Message Area
2 = Scrubber	·	· · · · · · · · · · · · · · · · · · ·
3 = Bagfilter	99.0	
4 = Multiple cyclone		

Postcombustion SO₂ controls

Enter the control type below >	Message Area	Or enter an SO ₂ control efficiency
0	·	below to override built in values.
Control Technology/Process		User Input SO, Cont. Effic.
0 = None/other		90.0
1 = Wet scrubber, Lime/limestone	Ava. Cont. Effic.	User entered control efficiency
2 = Wet scrubber, Sodium carbonate	0.0	may be overestimated and
3 = Wet scrubber, Magnesium oxide/hydroxide		should be documented.
4 = Wet scrubber, Dual alkali	<u>Remarks</u>	
5 = Spray drying, calcium hydroxide slurry, vap. in spray vessel	NA	
6 = Furnace injection, Dry calcium carbonate/hydrate inj. in upper f	furn. cavity	
7 = Duct injection, Dry sorbent injection into duct, sometimes comb	pined with water spray	

NO. controls

Enter the control type below 뇌	Message Area		Or enter a NO _x control efficiency
	0		below to override built in values.
Control Technology/Process			User Input NO. Cont. Effic.
0 = None/other			0.0
1 = Low excess air (LEA)		Avg. Cont. Effic.	Message Area
2 = Staged combustion (SC)		0.0	
3 = Burners out of service (BOOS)			
4 = Flue gas recirculation (FGR)		<u>Remarks</u>	
5 = Flue gas recirculation plus staged combustion		NA	
6 = Low NOx burners (LNB)			-
7 = Reduced air preheat (RAP)			
8 = Selective noncatalytic reduction (SNCR)			
9 = Conventional selective catalytic reduction (SCR)			

Emissions Output (for operation 6.79 hr/yr)				Emission
Criteria Pollutants	•			Factor ¹
Pollutant	- lb/hr²	tpy	lb/yr³	(lb/10 ³ gal)
Total PM (FPM + CPM)	3.0	0.0000	0	3.30E+00
Filterable PM (FPM) rates @ 99% control	0.0	0.0000	0	2.00E+00
Condensable PM (CPM)⁴	3.0	0.0000	0	1.30E+00
Filterable PM-10 ⁵	0.0	0.0000	0	1.00E+00
Filterable PM-2.5 ⁵	0.0	0.0000	0	2.50E-01
NOx rates uncontrolled	**	**	**	2.40E+01
NMTOC	0	0.0000	. 0	2.00E-01
co	12	0.0000	0	5.00E+00
SO2 rates @ 90% control	**	**	**	2.98E+02
Total HAP ⁶	4.17E-01	0.0000	0	1.81E-01
Largest HAP ⁶	1.84E-01	0.0000	· 0	7.97E-02

Toxic/Hazardous Air Pollutants.				Emission Factor ¹
Pollutant	lb/hr²	lb/day ⁷	lb/yr ³	(lb/10 ³ gal)
Antimony rates @ 99% control	0.00E+00	NA	0.00E+00	0.00E+00
Arsenic rates @ 99% control	1.29E-05	NA	0.00E+00	5.60E-04
Benzene	6.35E-03	NA	0.00E+00	2.75E-03
Beryllium rates @ 99% control	9.70E-06	NA	0.00E+00	4.20E-04
Cadmium rates @ 99% control	9.70E-06	NA	0.00E+00	4.20E-04
Chromium rates @ 99% control	9.70E-06	NA	0.00E+00	4.20E-04
Chromium VI rates @ 99% control	2.85E-06	NA NA	0.00E+00	1.23E-04
Cobalt rates @ 99% control	0.00E+00	NA	0.00E+00	0.00E+00
Ethylbenzene	1.89E-03	NA	0.00E+00	8.17E-04
Fluoride	8.61E-02	2.07E+00	0.00E+00	3.73E-02
Formaldehyde	1.11E-01	2.66E+00	0.00E+00	4.80E-02
Lead rates @ 99% control	2.91E-05	NA	0.00E+00	1.26E-03

Manganese rates @ 99% control	1.94E-05	4.65E-04	0.00E+00	8.40E-04
Mercury	9.70E-04	2.33E-02	0.00E+00	4.20E-04
Methyl chloroform (1,1,1-Trichloroethane)	5.45E-04	1.31E-02	0.00E+00	2.36E-04
Napthalene	7.69E-04	NA	0.00E+00	3.33E-04
Nickel rates @ 99% control	9.70E-06	2.33E-04	0.00E+00	4.20E-04
POM rates @ 99% control	7.62E-05	NA	0.00E+00	3.30E-03
Selenium rates @ 99% control	4.85E-05	NA	0.00E+00	2.10E-03
Toluene	1.84E-01	4.41E+00	0.00E+00	7.97E-02
Xylene	3.23E-03	7.76E-02	0.00E+00	1.40E-03

¹Emission factors represent AP-42 uncontrolled values. Emission rates are reflective of controls where applicable.

²Hourly emission rates for all pollutants are based on hourly rated capacity.

³Annual emission rates for all pollutants are based on maximum annual fuel throughput.

⁴Wet scrubbers are assumed to control CPM whereas other PM control devices are assumed to only control FPM.

⁵AP-42 assumes PM-10 and PM-2.5 assumes these pollutants are controlled with the same efficiency as total PM.

⁶Total and largest HAP factors and emission rates do not reflect control of metals. Individual metal emission rates are reflective of particulate matter controls where applicable.

⁷Daily emission rates are based on operation 24 hours per day at rated capacity.

^{**}SO2 and NOx emissions were estimated using CEMS data, please refer to the attached spreadsheets. FO2000 Revision A dated Merch 9, 2000

Chapel Hill, North Carolina Orange County Facility ID # 6800043 Permit # 03069T17

2004 Annual Emissions Inventory

Sulfur Dioxide Emissions from Boiler #7 (ES-002-Boiler #7)

The exhaust duct at Boiler #7 is equipped with a continuous emissions monitor (CEMs) for SO ₂ emissions. For the 2004 calendar year, 30 day facility averages for the SO₂ emission rate measured by the CEM are as follows:

Month	30 day average CEM reading (lb/MMBtu)
January 2004	0.146
February 2004	0.138
March 2004	0.139
April 2004	0.138
May 2004	0.178
June 2004	0.139
July 2004	. 0.135
August 2004	0.136
September 2004	0.106
October 2004	0.123
November 2004	0.127
December 2004	0.128
Annual Average	0.136

This average includes SO 2 emissions from coal, fuel oil, and natural gas within Boiler #6 over the entire year, representing a composite average for all fuels combusted.

Fuel Inputs to Boiler #7 for 2004

	Boiler	· #7					
Coal Tons/yr Gas 1,000cf/yr No. 6 Oil Gallons/yr No. 2 Oil Gallons/yr							
56,878	3,425	0	0				
Coal (13,068 btu/lb)	Nat. Gas (1,030 btu/cf)	Oil (150,000 btu/gal)	Oil (137,006 btu/gal)				
MMBtu/year							
1.49E+06	3.53E+03	0.00E+00	0.00E+00				

Total for Boiler #7	1.49E+06
(MMBtu/yr)	1,491,100

Total SO ₂ Emissions from Boiler #7 (lb/yr)	202,651
Total SO ₂ Emissions from Boiler #7 (ton/yr)	101.3

SO ₂ Emissions Associated with Coal Combustion (ton/yr)	101.3
SO ₂ Emissions Associated with No. 6 Fuel Oil Combustion (ton/yr)	0.0
SO ₂ Emissions Associated with No. 2 Fuel Oil Combustion (ton/yr)	0.00

Chapel Hill, North Carolina Orange County Facility ID # 6800043 Permit # 03069T17

2004 Annual Emissions Inventory

Nitrogen Dioxide Emissions from Boiler #7 (ES-002-Boiler #7)

The exhaust duct at Boiler #7 is equipped with a continuous emissions monitor (CEMs) for NOx emissions. For the 2004 calendar year, 30 day facility averages for the NOx emission rate measured by the CEM are as follows:

Month	30 day average CEM reading (lb/MMBtu)		
January 2004	0.49		
February 2004	0.46		
March 2004	0.35		
April 2004	0.33		
May 2004	0.31		
June 2004	0.33		
July 2004	0.29		
August 2004	0.30		
September 2004	0.30		
October 2004	0.40		
November 2004	0.40		
December 2004	0.42		
Annual Average	0.37		

This average includes NOx emissions from coal, fuel oil, and natural gas within Boiler #7 over the entire year, representing a composite average for all fuels combusted.

Fuel Inputs to Boiler #7 for 2004

	Boiler	#7					
Coal Tons/yr Gas 1,000cf/yr No. 6 Oil Gallons/yr No. 2 Oil Gallons/							
56,878 3,425		0	0				
Coal (13,068 btu/lb)	oal (13,068 btu/lb) Nat. Gas (1,030 btu/cf)		Oil (137,006 btu/gal)				
	MMBtu/	year					
1.49E+06 3.53E+03 0.00E+00 0.00E+00							

Total for Boiler #7	1.49E+06
(MMBtu/yr)	1.472.700

NOx Emissions from Boiler #7 (lb/yr)	543,880
NOx Emissions from Boiler #7 (ton/yr)	271.9

NOx Emissions Associated with Coal Combustion (ton/yr)	271.30
NOx Emissions Associated with Fuel Oil No. 6 Combustion (ton/yr)	0.0
NOx Emissions Associated with Fuel Oil No. 2 Combustion (ton/yr)	0.00
NOx Emissions Associated with Natural Gas Combustion (ton/yr)	0.64

Chapel Hill, North Carolina
Orange County
Facility ID # 6800043
Permit # 03069T17

2004 Annual Emissions Inventory

Boiler #8 (ES-003-Boiler #8)

Operating Scenario #1 - Natural Gas Firing Operating Scenario #2 - No. 2 Fuel Oil Firing

	er #8 - Operating Scenario #1 - Natural Gas	rermit #:	300911/
	on Source has multiple Operating Sonarios, complete one form for each. (All permitted, Insignificant and/or Non-permitted Sources)	County:	Orange
ity Name:	University of North Carolina at Chapel Hill	DAQ Region:	RRO

Facility ID #:

North Carolina Department of Environment and Natural Resources **Division of Air Quality**

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

. Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)					ES-003-Boiler #8	
2. Emission Source Description		Natural Gas / No. 2 Fuel Oil Fired Boiler				
3. Operating Scenario Description		Operating Scenario #1 - Natural Gas				
4. Maximum Permitted Operating Rate With Units (Ex. gal/hr, mmBtu/hr)		338.0 MMBtu/hr				
5. Throughput in CY (e.g. production or fuel use) With Units (Ex. lbs/yr, gal/yr)			94,	162		1,000 ft ³ /yr
6. Fuel Information (if fuel used)	% Sulfur	N/A	% Ash	N/A	Heat Content (Btu/lb or mmCF)	1,030 Btu/ft ³

If you do not provide annual throughput/fuel use, your inventory will be deemed incomplete and returned to you.

7. Capture Efficiency (% Emissions from Emission Source Vented to Control Device or Stack)		N/A

8. Control Device Information, if none, write "none"

Control Device ID # (as listed in permit)		Control Device Description
i. (nearest stack)	None	None
ii.	None	None
iii.	None	None
iv.	None	None

9. Stack Information (sources vented to more than one stack use additional entry lines)

	Height	Diameter (feet)	Temperature	Velocity	Volume Flow Rate	Release Point Description
Stack ID#	(in whole feet)	Circle (enter #), Rectangle (L#, W#) (in 0.1 feet)	(F)	(feet/sec)	(acfm)	(Fugitive, Vertical, Vertical w/ cap, Horizontal, Downward - see instructions)
EP-4	208	6	300	47.2	80073	Boiler Stack
	1	**			***	
			**	**		-

10. Operating Schedule (Source/Operating Scenario that best characterizes calendar year)

Hours/Day	Standby	Days/Week	Standby	Weeks/Year	Standby	Hours/Year	1,833 Total
Typical Start & End Times in CY:				Start:	N/A	End:	N/A

11. Seasonal Periods Percent Annual Throughput (for Emission Source in CY, MUST total 100%)

Jan-Feb, 2002 + Dec, 2002	3%	Mar-May	42%	June-Aug	2%	Sept-Nov	53%

Emission Source/Operating Scenario Data Page 2 of 2

Boller #8 - Operating Scenario #1 - Natural Gas
If Emission Source has multiple Operating Scenarios, complete one form for each

	(All permitted, Insignificent and/or Non-permitted Sources)	County:	Orange
Facility Name:	University of North Carolina at Chapel Hill	DAQ Region:	RRO

Facility ID #:

Permit #:

3069T17

North Carolina Dep	artment of Environment and Natural Resources
	Division of Air Quality

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

Emissions: Attach calculations and documentation of emission factors or other estimation methods used.

Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)

ES-003-Boiler #8

Criteria (NAAQS) Pollutants	Pollutant Code	Emissions Criteria (Tons/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Carbon Monoxide	co	3.95	8	N/A
NOx	NOx	3.39	8	N/A
PM Total	PM	0.36	8	N/A
PM-2.5	PM-2.5	0.36	8	N/A
PM-10	PM-10	0.36	8 .	N/A
SO2	SO2	0.03	8	N/A
VOC	VOC	0.26	8	N/A
HAP/TAP Pollutants (In Alphabetical Order)	CAS # (or other code - see instructions)	Emissions HAP/TAP (Pounds/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Arsenic	ARSENICCPDS	1.88E-02	8	N/A
Benzene	71-43-2	0.20	8	N/A
Cadmium	CADMIUMCPDS	1.04E-01	8	N/A
Chromium	CROMCPDS	1.32E-01	8	N/A
Chromium VI	CHROM6CPDS	1.32E-01	8	N/A
Dichlorobenzene	106-46-7	1.13E-01	8	N/A
Formaldehyde	50-00-0	7.06	8	N/A
Hexane	HEXANEISO	1.69E+02	8	N/A
Lead	LEADCPDS	4.71E-02	8	N/A
Manganese	MANGCPDS	3.58E-02	8	N/A
Mercury	MERCPDS	2.45E-02	8	N/A
Napthalene	91-20-3	5.74E-02	8	N/A
Nickel	NICKCPDS	0.20	8	N/A
POM ·	POM	6.23E-02	8	N/A
Toluene	108-88-3	0.32	8	N/A
-				

Emission Source/Operating Scenario Data Page 1 of 1 Facility ID #: 6800043 **Boller #8 - Operating Scenario #2 - No. 2 Fuel Oil If Emission Source has multiple Operating Scenario, complete one form for each. (All permitted, Insignificant and/or Non-permitted Sources) County: Orange Facility Name: University of North Carolina at Chapel Hill DAQ Region: RRO North Carolina Department of Environment and Natural Resources Division of Air Quality

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

. Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)					ES-003-Boiler #8	
2. Emission Source Description		Natural Gas / No. 2 Fuel Oil Fired Boiler Operating Scenario #2 - No. 2 Fuel Oil 338.0 MMBtu/hr				
3. Operating Scenario Description						
Maximum Permitted Operating Rate With Units (Ex. gal/hr, mmBtu/hr)						
 Throughput in CY (e.g. production or fuel use) With Units (Ex. lbs/yr, gal/yr) 			133,6	591	gallons/year	
6. Fuel Information (if fuel used)	% Sulfur	0.50%	% Ash	Heat Content (Btu/lb or sur	mCF) 135,344 Btu/ga	

If you do not provide annual throughput/fuel use, your inventory will be deemed incomplete and returned to you.

7. Capture Efficiency (% Emissions from Emission Source Vented to Control Device or Stack)	N/A
	,

8. Control Device Information, if none, write "none"

	Control Device ID # (as listed in permit)	Control Device Description
i. (nearest stack)	N/A	N/A
ii.	N/A	N/A
iii.	N/A	N/A
iv.	N/A	N/A

9. Stack Information (sources vented to more than one stack use additional entry lines)

	Height	Diameter (feet)	Temperature	Velocity	Volume Flow Rate	Release Point Description
Stack ID#	(in whole feet)	Circle (enter #), Rectangle (L#, W#) (in 0.1 feet)	(F)	(feet/sec)	(acfm)	(Fugitive, Vertical, Vertical w/cap, Horizontal, Downward - see instructions)
EP-4	208	, 6	300	47.2	80073	Boiler Stack
				••		
		_		••		-

10. Operating Schedule (Source/Operating Scenario that best characterizes calendar year)

Hours/Day	Standby	Days/Week	Standby	Weeks/Year	Standby	Hours/Year	1,833 Total
Typical Start & End Times in CY:			Start:	N/A	End:	N/A	

11. Seasonal Periods Percent Annual Throughput (for Emission Source in CY, MUST total 100%)

		<u> </u>					
Jan-Feb, 2002 + Dec, 2002	100%	Mar-May	0%	June-Aug	0%	Sept-Nov	0%

Emission Source/Operating Scenario Data Page 2 of 2

Boiler #8 - Operating Scenario #2 - No. 2 Fuel Oil
If Emission Source has multiple Operating Scenarios, complete one form for each

	(All permitted, Insignificant and/or Non-permitted Sources)	County:	Orange
acility Name:	University of North Carolina at Chapel Hill	DAQ Region:	RRO

Facility ID #:

Permit #:

6800043

3069T17

North Carolina Department of Environment and Natural Resources Division of Air Quality

Air Pollutant Point Source Emissions Inventory - Calendar Year 2004

Emissions: Attach calculations and documentation of emission factors or other estimation methods used.

Emission Source ID No. (same as in permit - Use "U" prefix for non-permitted and "I" for insignificant)

ES-003-Boiler #8

Criteria (NAAQS) Pollutants	Pollutant Code	Emissions Criteria (Tons/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Carbon Monoxide	со	0.33	8	N/A
NOx	NOx	0.64	8	N/A
PM Total	PM	0.22	8	N/A
PM-2.5	PM-2.5	0.02	8	N/A
PM-10	PM-10	0.07	8	N/A
SO2	SO2	1.64	. 8	N/A
VOC	VOC	0.01	8	N/A
HAP/TAP Pollutants (In Alphabetical Order)	CAS # (or other code - see instructions)	Emissions HAP/TAP (Pounds/Year)	Emissions Estimation Method Code (see instructions for code)	Control Efficiency (Net after all controls)
Arsenic	ARSENICCPDS	7.49E-02	8	N/A
Benzene	71-43-2	3.68E-01	8	N/A
Beryllium	BERYLCPDS	5.62E-02	8	N/A
Cadmium	CADMIUMCPDS	5.62E-02	8	N/A
Chromium	CROMCPDS	5.62E-02	8	N/A
Chromium VI	CHROM6CPDS	1.65E-02	8	N/A
Ethylbenzene	100-41-4	1.09E-01	. 8	N/A
Fluoride	16984-48-8	4.99	8	N/A
Formaldehyde	50-00-0	6.42	8	N/A
Lead	LEADCPDS	1.68E-01	8	N/A
Manganese	MANGCPDS	1.12E-01	8	N/A
Mercury	MERCPDS	5.62E-02	8	N/A
Methyl chloroform	71-55-6	3.16E-02	8	N/A
Napthalene	91-20-3	0.0445		N/A
Nickel	NICKCPDS	5.62E-02	8	N/A
POM	POM	4.41E-01	8	N/A
Selenium	SEC	2.81E-01	8	N/A
Toluene	108-88-3	10.65	8	N/A
Xylene	1330-20-7	1.87E-01	8	N/A

Natural Gas Combustion Emissions Calculator NG2000 Revision C 2004 Annual Emissions Inventory Boller #8 (ES-003-Boiler #8)

Facility ID # 6800043 Permit # 03069T17

Operating Scenario #1

User Input	
	University of North
Company Name:	Carolina at Chapel Hill
Plant County:	Orange County
Plant City:	Chapel Hill
Permit Number:	03069T17
User:	RST Engineering
Heat input Capacity (mmBtu/hr):	338
Fuel Input Capacity (10 ⁶ scf/hr):	0.33
Annual Fuel Throughput (10 ⁶ scf):	94.16
Latest Construction/Modification Date:	N/A
Enter the boiler type below ڬ	
	3 + 4

Other NOx Control	
Enter 1 below if SNCR is applied to the boiler.	

Large Wall-Fired Bollers (=>100 mmBtu/hr)

- 1 = Uncontrolled (Pre-NSPS)
- 2 = Uncontrolled (Post-NSPS)
- 3 = Controlled Low NOx burners 4 = Controlled Flue gas recirculation (FGR)

Small Bollers (<100 mmBtu/hr)

- 5 = Uncontrolled
- 6 = Controlled Low NOx burners
- 7 = Controlled Low NOx burners/FGR

Tangential-Fired Bollers (All Sizes)

- 8 = Uncontrolled
- 9 = Controlled FGR

Residential Furnaces (<0.3 mmBtu/hr)

10 = Uncontrolled

Emissions Output	Emission			
Criteria Pollutants	Factor			
Pollutant	lb/hr	lb/yr	tру	(lb/#mmscf)
PM	2.5E+00	7.2E+02	3.6E-01	7.6E+00
PM-10	2.5E+00	7.2E+02	3.6E-01	7.6E+00
PM-2.5	2.5E+00	7.2E+02	3.6E-01	7.6E+00
NOx	.**	**	* **	1.9E+02
voc	1.8E+00	5.2E+02	2.6E-01	5.5E+00
lco	2.8E+01	7.9E+03	4.0E+00	8.4E+01
SO2	2.0E-01	5.6E+01	2.8E-02	6.0E-01
Total HAP	6.3E-01	1.8E+02	8.9E-02	1.9E+00
Largest HAP	6.0E-01	1.7E+02	8.5E-02	1.8E+00

Toxic/Hazardous A				
Pollutant	lb/hr	lb/day	lb/yr	
Arsenic	6.6E-05	NA	1.9E-02	2.0E-04
Benzene	7.0E-04	NA NA	2.0E-01	2.1E-03
Cadmium	3.6E-04	NA	1.0E-01	1.1E-03
Chromium	4.6E-04	NA	1.3E-01	1.4E-03
Chromium VI	4.6E-04	NA	1.3E-01	1.4E-03
Dichlorobenzene	4.0E-04	NA	1.1E-01	1.2E-03
Formaldehyde	2.5E-02	NA	7.1E+00	7.5E-02
Hexane	6.0E-01	1.4E+01	1.7E+02	1.8E+00
Lead	1.7E-04	· NA	4.7E-02	5.0E-04
Manganese	1.3E-04	3.0E-03	3.6E-02	3.8E-04
Mercury	8.6E-05	2.1E-03	2.4E-02	2.6E-04
Naphthalene	2.0E-04	NA	5.7E-02	6.1E-04
Nickel	7.0E-04	1.7E-02	2.0E-01	2.1E-03
POM	2.2E-04	NA	6.2E-02	6.6E-04
Toluene	1.1E-03	2.7E-02	3.2E-01	3.4E-03

^{**} NOx emissions were estimated using CEMS data, please refer to the attached spreadsheets.

Hourly emission rates for all pollutants based on hourly rated capacity. NG2000 Revision C dated March 9, 2000

Fuel Oil Combustion Emissions Calculator FO2000 Revision A Boiler #8

2004 Annual Emissions Inventory (ES-003-Boller #8) Facility ID # 6800043 Permit # 03069T17

Operating Scenario #2

User input	
	University of North Carolina at
Company Name:	Chapel Hili
Plant County:	Orange County
Plant City:	Chapel Hill
Permit Number:	03069T17
User:	RST Engineering
Heat Input Capacity (mmBtu/hr):	338
Fuel Input Capacity (10 ³ gal/hr):	2.41
Annual Fuel Throughput (1000 gal):	133.69
Maximum fuel sulfur content (%)	0.50
Latest Construction/Modification Date:	N/A
Enter the boller type below 🏻	
	17

Boilers =>100 mmBtu/hr	Boilers =>100 mmBtu/hr (cont'd)
1 = No. 6 oil fired, normal firing (U)	16 = No. 2 oil fired (C)
2 = No. 6 oil fired, normal firing (I)	17 = No. 2 oil fired, LNB/FGR (U,I)
3 = No. 6 oil fired, normal firing (C)	18 = No. 2 oil fired, LNB/FGR (C)
4 = No. 6 oil fired, normal firing, low NOx burner (U)	
5 = No. 6 oil fired, normal firing, low NOx burner (I)	19 = Vertical fired utility boiler
6 = No. 6 oil fired, normal firing, low NOx burner (C)	
7 = No. 6 oil fired, tangential firing (U)	Small Boilers (<100 mmBtu/hr)
8 = No. 6 oil fired, tangential firing, low NOx burner (U)	20 = No. 6 oil fired (I)
9 = No. 5 oil fired, normal firing (U)	21 = No. 6 oil fired (C)
10 = No. 5 oil fired, normal firing (I)	22 = No. 5 oil fired (C)
11 = No. 5 oil fired, tangential firing (U)	23 = No. 4 oil fired (C)
12 = No. 4 oil fired, normal firing (U)	24 = No. 2 oil fired (I)
13 = No. 4 oil fired, normal firing (I)	25 = No. 2 oil fired (C)
14 = No. 4 oil fired, tangential firing (U)	
15 = No. 2 oil fired (U,I)	26 = Residential Furnace

Fuel Oil Combustion Emissions Calculator FO2000 Revision A Boller #8

2004 Annual Emissions Inventory (ES-003-Boiler #8) Facility ID # 6800043 Permit # 03069T17

Operating Scenario #2

User Input	
	University of North Carolina at
Company Name:	Chapel Hill
Plant County:	Orange County
Plant City:	Chapel Hill
Permit Number:	03069T17
User:	RST Engineering
Heat Input Capacity (mmBtu/hr):	338
Fuel Input Capacity (10³ gal/hr):	2.41
Annual Fuel Throughput (1000 gal):	133.69
Maximum fuel sulfur content (%)	0.50
Latest Construction/Modification Date:	N/A

Emission Controls

Particulate controls

Enter the control type below \(\frac{1}{2}\)	Message Area	Or enter a PM control efficiency below to override built in values.
Control Device 0 = None/other	Avg. Cont. Effic. 0.0	User Input PM Cont. Effic. 0.0
= ESP = Scrubber 3 = Bagfilter 4 = Multiple cyclone	0.0	Message Area

Postcombustion SO₂ controls

Enter the control type below \(\sigma\) Mes	sage Area	Or enter an SO ₂ control efficiency below to override built in values.
V ₁		Delow to override ballt in values.
Control Technology/Process		User Input SO₂ Cont. Effic.
0 = None/other		0,0
1 = Wet scrubber, Lime/limestone	Avg. Cont. Effic.	Message Area
2 = Wet scrubber, Sodium carbonate	0.0	
3 = Wet scrubber, Magnesium oxide/hydroxide		
4 = Wet scrubber, Dual alkali	<u>Remarks</u>	
5 = Spray drying, calcium hydroxide slurry, vap. in spray vessel	NA ·	
6 = Furnace injection, Dry calcium carbonate/hydrate inj. in upper furn.	cavity	
7 = Duct injection, Dry sorbent injection into duct, sometimes combined	with water spray	

NO_x controls

Enter the control type below >	Or enter a NO _x control efficiency
5+6	below to override built in values.
Control Technology/Process	User Input NO, Cont. Effic.
0 = None/other	0.0
= Low excess air (LEA)	Avg. Cont. Effic. Message Area
= Staged combustion (SC)	0.0
3 = Burners out of service (BOOS)	
4 = Flue gas recirculation (FGR)	<u>Remarks</u>
5 = Flue gas recirculation plus staged combustion	NA .
6 = Low NOx burners (LNB)	
7 = Reduced air preheat (RAP)	
8 = Selective noncatalytic reduction (SNCR)	

Fuel Oil Combustion Emissions Calculator FO2000 Revision A Boiler #8

2004 Annual Emissions Inventory (ES-003-Boller #8) Facility ID # 6800043 Permit # 03069T17

Operating Scenario #2

User Input	
	University of North Carolina at
Company Name:	Chapel Hill
Plant County:	Orange County
Plant City:	Chapel Hill
Permit Number:	03069T17
User:	RST Engineering
Heat Input Capacity (mmBtu/hr):	338
Fuel Input Capacity (10 ³ gal/hr):	2.41
Annual Fuel Throughput (1000 gal):	133.69
Maximum fuel sulfur content (%)	0.50
Latest Construction/Modification Date:	N/A

Emissions Output				Emission
Criteria Pollutants				Factor ^f
Pollutant	lb/hr ²	tpy	lb/yr ³	(lb/10 ³ gal).
Total PM (FPM + CPM)	8.0	0.2206	441	3.30E+00
Filterable PM (FPM) rates uncontrolled	4.8	0.1337	267	2.00E+00
Condensable PM (CPM) ⁴	3.1	0.0869	174	1.30E+00
ilterable PM-10 ⁵	2.4	0.0668	134	1.00E+00
਼ਾilterable PM-2.5 ⁵	0.6	0.0167	33	2.50E-01
NOx rates uncontrolled	**	**	**	2.40E+01
NMTOC	0	0.0134	27	2.00E-01
co	12	0.3342	668	5.00E+00
SO2 rates uncontrolled	59.2	1.6377	3,275	2.45E+01
Total HAP ⁶	4.36E-01	0.0121	24	1.81E-01
Largest HAP ⁶	1.92E-01	0.0053	11	7.97E-02

**NOx emissions based on CEMs data.				Emission
Toxic/Hazardous Air Pollutants.				Factor ¹
Pollutant	lb/hr ²	lb/day ⁷	lb/yr ³	(lb/10 ³ gal)
Antimony rates uncontrolled	0.00E+00	NA	0.00E+00	0.00E+00
Arsenic rates uncontrolled	1.35E-03	NA	7.49E-02	5.60E-04
Benzene	6.64E-03	V		i
Beryllium rates uncontrolled	1.01E-03	NA		
Cadmium rates uncontrolled	1.01E-03	NA	1	
Chromium rates uncontrolled	1.01E-03	NA	5.62E-02	1
Chromium VI rates uncontrolled	2.98E-04	NA	1.65E-02	1.23E-04
Cobalt rates uncontrolled	0.00E+00	NA	0.00E+00	1
Ethylbenzene	1.97E-03		1.09E-01	
Fluoride	9.01E-02	2.16E+00	4.99E+00	3.73E-02
Formaldehyde	1.16E-01	2.78E+00	6.42E+00	
Lead rates uncontrolled	3.04E-03		1.68E-01	
Manganese rates uncontrolled	2.03E-03	4.87E-02		
Mercury	1.01E-03	2.43E-02	5.62E-02	4.20E-04
'ethyl chloroform (1,1,1-Trichloroethane)	5.70E-04	1.37E-02	3.16E-02	2. 3 6E-04
Naphthalene	8.04E-04	NA	4.45E-02	3. 3 3E-04
Nickel rates uncontrolled	1.01E-03	2.43E-02	5.62E-02	. 4.20E-04
POM rates uncontrolled	7.97E-03	NA	4.41E-01	3.30E-03
Selenium rates uncontrolled	5.07E-03	NA	2.81E-01	2.10E-03
Toluene	1.92E-01	4.62E+00	1.07E+01	7.97E-02
Xylene	3.38E-03	8.12E-02	1.87E-01	1.40E-03

Fuel Oil Combustion Emissions Calculator FO2000 Revision A Boiler #8

2004 Annual Emissions Inventory (ES-003-Boiler #8) Facility ID # 6800043 Permit # 03069T17

Operating Scenario #2

User Input		
	University of North Carolina at	
Company Name:	Chapel Hill	
Plant County:	Orange County	
Plant City:	Chapel Hill	
Permit Number:	03069T17	
User:	RST Engineering	
Heat Input Capacity (mmBtu/hr):	338	
Fuel Input Capacity (10 ³ gal/hr):	2.41	
Annual Fuel Throughput (1000 gal):	133.69	
Maximum fuel sulfur content (%)	0.50	
Latest Construction/Modification Date:	N/A	

¹Emission factors represent AP-42 uncontrolled values. Emission rates are reflective of controls where applicable.

aily emission rates are based on operation 24 hours per day at rated capacity.

SO2 and NOx emissions were estimated using CEMS data, please refer to the attached spreadsheets. FO2000 Revision A dated March 9, 2000

²Hourly emission rates for all pollutants are based on hourly rated capacity.

³Annual emission rates for all pollutants are based on maximum annual fuel throughput.

Wet scrubbers are assumed to control CPM whereas other PM control devices are assumed to only control FPM.

⁵AP-42 assumes PM-10 and PM-2.5 assumes these pollutants are controlled with the same efficiency as total PM.

⁶Total and largest HAP factors and emission rates do not reflect control of metals. Individual metal emission rates are reflective of particulate matter controls where applicable.

Chapel Hill, North Carolina Orange County Facility ID # 6800043 Permit # 03069T17

2004 Annual Emissions Inventory

Nitrogen Dioxide Emissions from Boiler #8 (ES-003-Boiler #8)

The exhaust duct at Boiler #8 is equipped with a continuous emissions monitor (CEMs) for NOx emissions. For the 2004 calendar year, 30 day facility averages for the NOx emission rate measured by the CEM are as follows:

Month	30 day average CEM reading (lb/MMBtu)
January 2004	0.06
February 2004	0.06
March 2004	0.06
April 2004	0.06
May 2004	0.05
June 2004	0.05
July 2004	0.05
August 2004	0.05
September 2004	0.05
October 2004	0.07
November 2004	0.07
December 2004	0.07
Annual Average	0.07

This average includes NOx emissions from coal, fuel oil, and natural gas within Boiler #8 over the entire year, representing a composite average for all fuels combusted.

Fuel Inputs to Boiler #8 for 2004

Boile	er #8
Gas 1,000cf/yr	Oil Gallons/yr
94,162	133,691
Nat. Gas (1,030 btu/cf)	Oil (137,006 btu/gal)
MMB	Stu/yr
9.70E+04	1.83E+04

Total for Boiler #8	1.150.05
(MMBtu/yr)	1.15E+05

NOx Emissions from Boiler #8 (lb/yr)	8,071
NOx Emissions from Boiler #8 (ton/yr)	4.0

NOx Emissions Associated with Fuel Oil Combustion (ton/yr)	0.64
NOx Emissions Associated with Natural Gas Combustion (ton/yr)	3.39

Chapel Hill, North Carolina
Orange County
Facility ID # 6800043
Permit # 03069T17

2004 Annual Emissions Inventory

Coal Crusher/Conveyor Building (ES-010A)